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Introduction  

The differential equations have played a central role in 

every aspect of applied mathematics for every long time and 

with the advent of the computer, their importance has increased 

father. 

Thus investigation and analysis of differential equations 

cruising in applications led to many deep mathematical 

problems; therefore, there are so many different techniques in 

order to solve differential equations.   

In order to solve the differential equations, the integral    

transforms were extensively used and thus there are several 

words on the theory and applications of integral transforms such 

as the Laplace, Fourier, Mellin, Hankel and Sumudu, to name 

but a few. Recently, Tarig M. Elzaki introduced a new integral 

transform, named Tarig transform, and further applied it to find 

the solution of ordinary and partial differential equations.  

Definition and Derivations Tarig Transform of Derivatives 
Tarig transform is defined as:  
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To obtain Tarig transform of Partial derivatives we use 

integration by parts as follows: 
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Integrating by parts to find: 
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     We assume that f  is piece wise continuous and is of 

exponential order.  

Now 
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Also we can find that:  
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By equation (2) we have,   
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We can easily extend this result to the nth partial derivative by 

using mathematical induction. 

Solution of Partial Differential Equations 

 In this paper we solve the linear first and second order 

partial differential equations, which are fundamental equations 

in mathematical physics' and occur in many branches of physics, 

a applied mathematics as well as in engineering. 

Example 1:  

     Find the solution of the first order initial value problem, 

          ( ) 32 , ,0 6 xy y
y y x e

x t
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             (6)           

And y is bounded for 0 , 0.x t> >  
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Solution: 

    Let ( )F u  be Tarig transform of, then, taking Tarig 

transform of (6) to get: 
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Where ( )F u  is Tarig transform of ( ),y t x  using the initial 

condition to find that: 
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This is the linear ordinary differential equation, the integrating 

factor is   
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  ( )F u  is bounded, then 0c =  and   
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Taking the inverse Tarig transform to find: 
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Example 2: 
Consider the one dimensional unsteady heat conduction problem 

as follows:  
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With the boundary conditions:  

                                       

( ) ( ) ( ),0 3sin2 , 0, 1, 0U x x U t U tπ= = =                      (8) 

Solution:  
       Taking Tarig transform of eq (7) we have: 
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The solutions of (9) are,  
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 Taking Tarig transform of the boundary conditions,  
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This problem has an interesting physical interpretation .If we 

consider a solid bounded by the infinite plane faces 

0 1,x and x= =   the equation.    
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k
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  is the 

equation for heat conduction in this solid where ( ),U U x t=  

is the temperature at any plane face x at any time t and k  is 

a constant called the diffusivity, which depends on the material 

of the solid, .The boundary conditions 

( ) ( )0, 0 1, 0U t and U t= =  Indicate that the 

temperatures at 0 1x and x= =    are   kept at temperature 

zero, while  ( ),0 3sin 2U x xπ=  represents the initial 

temperature every where   in 0 1,x< <  result (*) is the 

temperature Everywhere in the solid at time 0t > . 

Example 3:  
      Consider the following wave equation, 

                    

( ) ( )2 2

2 2

, ,
4 0 , 0 1 , 0

w x t w x t
x t

t x

∂ ∂
− = ≤ ≤ >

∂ ∂
    (10)              

With the initial conditions:  

                                   

( ), 0 s i n , ( , 0 ) 0
w

w x x x
t

π
∂

= =
∂

  (11) 

And the boundary conditions, 

                                         ( ) ( )0, 1, 0w t w t= =              (12) 

Solution:  
         Applying Tarig transform to eq(10) we have:  
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Where ( ),w x u  is Tarig transform of ( ), .w x t  substituting 

eq(11) into eq(13) we get:  
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Then:                 
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Example 4:  
       Consider the following Laplace equation,   
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   By using Tarig transform into eq(15) yields: 
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Example 5:  
       Consider the following Telegrapher's equation,  
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  And,             ( ) ( ), 1 cos
t

U x t t e x
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Conclusion 
Application of tarig transform to solution of special 

different partial differential equation has been demonstrated.  
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Appendix 

Tarig Transform of Some Functions 
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